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Abstract. We present here a new algorithm to simulate 2~ ballistic aggregates with one-sided 
rain on a seed. This algorithm makes use of the non-local shadowing effect by which a 
particle in the aggregate gets shadowed by a chain of particles originated elsewhere in the 
cluster. This algorithm has far less memory requirement as compared to the conventional 
algorithm. Physical implications of the triangle rule proposed as a part of the algorithm 
are discussed. Possible generalisations of the algorithm are indicated. 

1. Introduction 

In recent years considerable attention has been focused on the irreversible aggregation 
processes in which particles approaching from outside are irreversibly added to growing 
aggregates [ 1,2]. One of the first such models was diffusion limited aggregation (DLA) 
in which the diffusion of particles to the aggregate is the rate limiting step [3]. A 
simpler model in which the particles travel towards the aggregate in straight lines has 
also been studied quite extensively. This is known as the ballistic driven aggregation 
(BDA) model [4-121. This model corresponds to the growth of amorphous thin films 
[S, 131 and also corresponds to the ‘drift only’ limit of DLA [ l ,  51. 

Two versions of the BDA model have been studied. In the on-lattice version [9], 
point particles move on the lattice and stick to the cluster if one of the nearest neighbours 
belongs to the cluster. In the off-lattice case [lo-121 particles of finite size move in a 
continuum and stick to the first contacted particle in the aggregate. In  this paper we 
are exclusively concerned with the off-lattice BDA. 

The rules for BDA are fairly simple. Particles move in straight lines, in a single 
direction, and fall on the previously grown aggregate of size N ( N  3 l ) ,  A falling 
particle adds to the aggregate at the first contact with a previously added particle. 
There are two variants: growth on a single seed particle [7] and growth on a line 
[8,13]. In the first case one gets a fan, while in the second case a columnar structure 
appears for large angles of incidence. As we shall see in § 3, the ingredients of columnar 
growth are present even in the fan structure. The algorithm presented here applies to 
growth on a seed particle, but can be easily modified to incorporate growth on a line. 

The BDA model has the following characteristics. There is no interaction between 
the falling particles. Also the grown aggregate does not influence the falling particles 
in any way except at the contact. Within these limitations we can assume that the 
events of addition of particles to the aggregate are statistically independent. In the 
computer simulations, therefore, we can add one particle at a time to the aggregate. 
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Probably the most important geometrical fact about BDA is the non-local shadowing 
of one part of the structure by another. To be precise, a particle in the aggregate 
exposed to the falling particles at a certain stage of growth may get shadowed (partly 
or fully) at a later stage of growth, by a chain of particles originating somewhere else 
in the aggregate. A particle can, of course, get shadowed locally, by another particle 
directly falling over it. This shadowing effect plays a central role in most of the 
geometric properties of BDA. 

2. The algorithm 

At a given stage of growth, a particle in the aggregate is defined to be a surface particle 
if a falling particle can make direct contact with it. A particle which is not a surface 
particle is a core particle. Due to the shadowing effect, a surface particle at a certain 
stage of growth becomes a core particle some time later as the aggregate grows. This 
particular fact lies at the heart of the present algorithm. 

Consider the aggregate at a time t after the growth starts. Let x L  and xR denote 
the x coordinates of the two extreme particles of the aggregatet. Further, let r denote 
the radius of the particle. Note that the extreme particles are necessarily surface 
particles. We now associate with every surface particle an interval along the x axis 
with the following defining property. A falling particle having the x coordinate of its 
centre within the interval associated with a surface particle necessarily hits that surface 
particle. Such an interval can be associated with every surface particle because the 
event that a falling particle simultaneously hits more than one surface particle has zero 
probability. The values of the x coordinates for which such an event can take place 
forms a discrete set of points on the x axis which has zero probability. Let us call the 
associated interval the growth interval of the surface particle. Two successive growth 
intervals are separated by a vertical demarcation line. A growth interval has a left 
demarcation line (LDL) and right demarcation line (RDL) .  A particle falling with its 
centre exactly along a demarcation line hits more than one particle simultaneously. 
As stated above, such an event has zero probability. It is easy to see that all the growth 
intervals are intrinsically ordered. If  x, and x2 denote the x coordinates of the surface 
particles 1 and 2, respectively, and if x, < x2, then the growth interval of particle 2 lies 
on the right of that of particle 1. Also, the set of all growth intervals partitions the 
range xL-2r  to x,+2r. A part of the surface particles and their growth intervals is 
shown in figure 1. 

We now assume that we are given an aggregate comprising N particles. This means 
that positions of all the N particles as well as the list of surface particles with a 
corresponding list of growth intervals is known. We shall now present a procedure to 

(i)  add the ( N  + 1 )th particle to the aggregate; and 
(ii) restructure the list of growth intervals and surface particles as a result of 

addition of the ( N  + 1)th particle. 
As a result of the second step, the lists of growth intervals and surface particles 

get reconstructed. In this process some of the surface particles may become core 
particles, as a result of total shadowing due to the newly added particle. When the 
second step is completed, the ( N  + 2)th particle can be added to the aggregate. Steps 

+There will be exactly two extreme particles in the cluster because more than two extreme particles 
corresponds to the event that two particles fall exactly on top of each other. This event has zero probability. 
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Figure 1. A section of the surface particles and their growth intervals. Note that all the 
particles are not in direct contact, which shows that shadowing is non-local. By assuming 
various particle positions of the ( N  + 1)th particle (the broken circle), one can verify step 
(ii) in the algorithm (see the text). 

( i)  and (ii) form the core of our algorithm which is iterated every time a new particle 
is added. 

The first step is fairly easy to accomplish. We choose at random a value of x (say 
x f )  lying between x L - 2 r  and x R + 2 r  as the x coordinate of the falling particle. This 
x f  value must lie in one and only one growth interval which fixes the surface particle 
to which this falling particle sticks. It is trivial to calculate the y coordinate of the 
newly added ( N +  1)th particle in the cluster. This completes step (i) .  

In order to accomplish step (ii), note that the newly added particle will affect only 
the fraction of surface particles whose centres fall in the range xr+2r .  Therefore, we 
concentrate only on such surface particles and their growth intervals. We call these 
particles 'concerned' particles. Let the number of concerned particles be n , .  

There is a surprisingly simple rule to determine the reconstructed position of the 
demarcation line separating successive intervals and hence the reconstructed intervals 
themselves. As shown in figure 2 ( a ) ,  let A and B represent the centres of two surface 
particles at a distance less than 4r. This figure also shows two arcs of circles both 
having radius 2r, drawn around A and B respectively. These arcs form the locus of 
the centre of a particle stuck to either A or B. C is the point of intersection of these 
two arcs and a particle with its center at C will simultaneously touch both A and B. 
Obviously a particle falling with its center on the left of the vertical line drawn through 
C will stick to A and that falling on the right will stick to B. Thus this line is the 
demarcation line for the growth intervals of A and B. As shown in the figure, point 
C lies at the apex of the isosceles triangle with sides AC = BC = 2r and AB < 4r. Thus 
the position of the demarcation line is the position of vertex C of this isosceles triangle. 

Figures 2( b )  and 2( c )  depict situations where this triangle rule does not apply. Let 
y ,  denote the y coordinate of particle A and y s  denote the y coordinate of a particle 
added to the cluster after A and stuck to A. By the rules of the BDA model it is clear 
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Figure 2. Determination of growth intervals for two surface particles ( a )  when the triangle 
rule applies and ( b ) ,  ( c )  when the triangle rule does not apply. For details see the text. 

that y ,  3 y,. Thus when the vertex of the triangle lies below the horizontal line drawn 
through the centre of the upper particle, the position of the demarcation line is at a 
distance 2r from the centre of the upper particle. As in figure 2(c) whenever the 
distance A B s 4 r  the triangle rule does not apply and the demarcation line is at a 
distance 2r from the centre of the upper particle. 

Note that the heights of the concerned particles relative to that of the newly added 
particle can be either positive or negative. The same is true for their relative positions 
along the x axis (see figure 1). 

Counting from the left, consider the ith concerned particle and the ith growth 
interval corresponding to it. Assuming that this particle lies on the left of the newly 
added particle, we can find the demarcation line between these two particles by the 
triangle rule or otherwise. If this demarcation line lies on the left of the RDL of the 
ith interval then a subsequent particle falling with its centre between this demarcation 
line and the RDL of the ith interval cannot stick to the ith particle. Hence the new 
demarcation line becomes the RDL of the ith growth interval. Note that if the new 
demarcation line lies on the left of the LDL of the ith interval, the ith particle gets 
completely shadowed and becomes a core particle. If the new demarcation line lies 
on the right of the ith interval, the ith interval remains unaltered. In  any case, the 
new demarcation line forms the current position of the LDL of the new particle’s growth 
interval, because a particle falling with its centre on the left of it cannot hit the new 
particle. 

For the case where ith particle is on the right of the new particle, the above argument 
goes through, word for word, provided we interchange the words LDL and RDL and 
also the phrases ‘on the left of and ‘on the right of wherever they occur. 

To accomplish step (ii) the procedure described in the above two paragraphs is 
repeated for i = 1,2, . . . , n,, starting from the leftmost concerned particle. 

It is easy to see that, when a particle on the left (right) of xf gets completely 
shadowed, the demarcation line formed by pairing it with the new particle may lie on 
the left (right) of the current L D L  (RDL)  for the new particle. In this case the current 
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LDL (RDL) of the new particle is not changed. Thus the LDL ( R D L )  of the new particle 
is always pushed towards right (left). 

Note that we have implicitly made use of the intrinsic ordering of the concerned 
particles and their growth intervals: for x, > x, the demarcation line of the particle at 
xJ,  when paired off with the new particle, lies on the right of the corresponding line 
for x,, except when the particle at xJ gets completely shadowed. This completes step (ii). 

Steps (i) and (ii) give us a means to construct an aggregate of size N + 1, given an 
aggregate of size N. 

Using this algorithm we have simulated several BDA clusters typically of the size 
2.2 x lo5 particles. The largest aggregate generated comprised 4 x lo5 particles. We 
emphasise that these clusters were grown using a computer whose maximum usable 
core memory was about 80000 words. Even then the cluster size was limited by the 
computer time rather than memory. The analysis of the grown clusters is reported in 
a separate paper [12]. 

The major advantage of this algorithm is the reduction in the computer memory 
required. Only the coordinates of the surface particles and the growth intervals need 
to be stored. This memory requirement is proportional to the radius of the aggregate, 
say R. In the program written according to the above algorithm, as soon as a new 
particle is added, its relevant information is written onto a disc. Whenever a surface 
particle becomes a core particle its information is washed out of the computer memory. 

We now analyse the overheads involved in implementing our algorithm. While 
implementing step (ii) we have to extract the sublists of the concerned particles and 
their growth intervals from the lists of total surface particles and their growth intervals. 
Here we need to locate the growth interval corresponding to the positions xf+ 2r and 
x f - 2 r .  In our implementation this is done by the binary search method. Hence, on 
the average 2 log, M searches are required to locate both the positions x,*2r, where 
M is the number of surface particles. Afterwards the list of the growth intervals is 
reconstructed and the shadowed particles are eliminated. The reconstructed lists are 
inserted back into the parent lists of growth intervals and surface particles. Due to 
the reconstruction, either an extra particle is to be inserted in the lists or a few core 
paticles are to be removed. This involves on average i M  movements. However, if one 
divides the lists of surface particles and their growth intervals into a number of ‘boxes’, 
each of fixed width 2r, then obtaining the box corresponding to the value x f  involves 
a simple formula: 

n = [ x f / 2 r ]  + 1 

where n is the number of the box relevant to x f  (xf is now measured from the left edge 
of the leftmost box) and 1x1 means the greatest integer S X .  Now we need to implement 
our algorithm on the surface particles and growth intervals corresponding to ( n  - l)th, 
nth and ( n  + 1)th box. This modification in the implementation of our algorithm would 
drastically reduce the overheads described above and make them essentially indepen- 
dent of M and hence of the size of the aggregate. We feel that with this modification 
in its implementation our algorithm can become both fast and have minimal storage 
requirements. 

In the conventional algorithm [4,14] to generate BDA on a seed with single-sided 
rain one finds all the particles in the cluster whose centres fall in the range x f * 2 r .  
Out of these particles the new particle sticks to that particle for which the y coordinate 
of the new particle (when stuck) is the highest. Obviously this requires the information 
on a large number of particles (compared to the number of surface particles) to be 
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stored in the computer memory. Additionally this algorithm requires sorting on x and 
y coordinates of the cluster particles. 

Various generalisations of this algorithm are possible. Generalisation to growth 
on a line (with rain in one direction) is evident. Particles of different radii can be 
considered. A multisided rain can also be tackled provided the number of rain 
directions is discrete and fixed beforehand. It is also possible to grow extended range 
ballistic aggregates ( E R B A )  using our algorithm [ 151. 

3. Significance of the triangle rule 

The triangle rule used to define growth intervals in this algorithm seems to have a 
much deeper significance. It embodies the competition for growth between the surface 
particles. When the triangle rule applies, the growth interval of the upper particle 
shrinks by a certain amount, which is gained by that of the lower particle. Figures 
3 ( a )  and ( b )  show the triangle and non-triangle situations on the background of the 
average shape of the top surface [8]. One can easily see that, in the non-triangle case, 
the local direction of growth deviates by a larger amount compared with the triangle 
case, from the average growth direction. Thus at the microscopic level the triangle 
rule seems to be a realisation of the columnar growth. 

Analysis of our computer grown aggregates, on the same lines as [9], shows that 
the limiting semivertical cone angle is about 15.5" [12]. Meakin et al [ll] also report 
a very close value (16") on the basis of their simulations of BDA on a line. However, 
all of the previous theoretical estimates of this angle lie between 18 and 20" [8, 10, 121. 
We can understand this discrepancy on the basis of the triangle rule. Suppose a particle 
A has stuck to a particle B. I f  we disregard the triangle rule, then a simple calculation 

,I nrnl nrnwth  rlmrtinn 
P - 

, Average growth direction 

\ 
Average growth direction 

Figure 3. The deviation of the local growth direction from the average growth direction 
is displayed ( 0 )  when the triangle rule applies and ( b )  when it does not apply. Particles 
are drawn on the average top curve of the cluster. The broken particle i s  the falling particle 
and the broken line is the relevant demarcation line. Here CY is the angle between the 
direction of incidence and the normal to the top curve and p i s  the column angle. 
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shows that the average angle made by the particle A with the vertical line drawn 
through B is 32.5". This corresponds to an average increase in height per particle of 
i r r .  Whenever the triangle rule applies, it eliminates the possibility of A sticking to 
B making an angle larger than a certain value: A sticks to the other competing surface 
panicle instead, making a smaller angle with the vertical line. Thus if the triangle rule 
applies for the major fraction of events, the probability that a particle sticks to a 
previous particle making large angles with the vertical line is reduced as compared to 
the situation when the triangle rule is disregarded. This implies a smaller average 
angle made by A with the vertical line through B and a larger average height increase 
per particle. This in turn will mean a smaller semivertical fan angle. In order to check 
this argument, we estimated from our grown aggregates the angle with the vertical line 
made by the chains of particles which grow outwards and terminate at the edges of 
the fan. This average angle turned out to be 28" [ 1 2 ] .  This is less than 32.5", showing 
that the average increase in height is greater than i r r .  This clearly indicates the 
important role played by the triangle rule in the BDA process. 

We now give an argument to show that the triangle rule applies for a large fraction 
of surface particles. The triangle rule applies whenever the line joining the competing 
surface particles makes an angle with the horizontal which is less than the base angle 
of the triangle. This angle is determined by the distance between the two surface 
particles, say D and is given by cos-'( D / 4 r )  where 2r  s D < 4r.  For D = 2r,  this critical 
angle is ir. Imagine now that the average top curve (see figure 3)  is covered by adjacent 
surface particles. Then the angle made by the line joining two adjacent particles with 
the x axis can be taken to be the angle (with the x axis) made by the tangent to the 
curve at the point of contact of the two particles. It is easy to see that this angle is 
the same as a as defined in figure 3. The triangle rule applies to all the cases 
corresponding to a <+T. The angle a is related to the fan angle 8 by [ 8 ]  

e = tan-'[tan a / (2+ tan2  a ) ] .  
For a =ir, e = 29" which is greater than the observed limiting fan angle [ l l ,  121. In  
reality, fluctuations in the positions of surface particles around the average top curve 
tend to reduce this value of 0. At any rate, the triangle rule should apply to a large 
fraction of surface particles. The above arguments indicate that the triangle rule 
embodies a microscopic process which results in macroscopic effects, like the columnar 
structures observed in BDA. 
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